Find the mean and standard deviation for a random variable X
Find the mean and standard deviation for a random variable X having the following CDF:
F(x) = {
0, x < 3
3/8, 3 x < 1
11/16, 1 x < 5
1, x 5
Solution
F(x)=0 x<-3
=3/8 -3<=x<1
=11/16 1<=x<5
=1 x>=5
so here X takes only 3 values... -3,1,5
P[X=-3]=P[X<=-3]-P[X<-3]=F(3)-F(-3-0)=3/8
P[X=1]=P[X<=1]-P[X<1]=F(1)-F(1-0)=11/16-3/8=5/16
P[X=5]=1-P[X=-3]-P[X=1]=1-3/8-5/16=5/16
hence the probability distribution of X is given as---
X: -3 1 5
P[X=x]: 3/8 5/16 5/16
therefore mean of X is--
E[X]=-3*3/8+1*5/16+5*5/16=3/4=0.75 [ANSWER]
now E[X2]=((-3)^2)*3/8+(1^2)*5/16+(5^2)*5/16
=9*3/8+1*5/16+25*5/16=11.5
therefore V(X)= E[X2]-E2[X]11.5-0.752=10.9375
so standard deviation is suqareroot(10.9375)=3.3072 [answer]
