For the following equation yay0 with boundary conditions y0y
For the following equation y\"+ay=0 with boundary conditions y(0)=y\'(pi)=0 find the eigen values and its corresponding eigen functions.
Solution
Case 1:a=0
y\'\'=0
INtegrating gives
y=Ax+B
y(0)=B=y\'(pi)=A=0
y=0
trivial solution
Case 2:a<0,a=-k^2
y\'\'=k^2y
y=A e^{kx}+B e^{-kx}
y(0)=A+B=0 ie A=-B
y\'=kA( e^{kx}+e^{-kx})
y\'(pi)=0 gives A=0 hence, B=0
so y=0 ie trivial solution
Case 3: a>0,a=k^2
y\'\'=-k^2y
y=A sin(kx)+B cos(kx)
y(0)=B=0
y\'(x)=Ak cos(kx)
y\'(pi)=Ak cos(k pi)=0
HEnce, kpi =(2n+1)pi/2
k=(2n+1)/2,n=0,1,2,3,...
