Differential equations Horizontal Beam Wxx2x Solve the diffe
Differential equations: Horizontal Beam
W(x)=x2+x
Solve the differential equation
at y=-1-(r2 +z) y-4Solution
Let, 1/EI=k
So,Integrating twice w.r.t. x gives
y\'\'=k(x^4/12+x^3/6)+Ax+B
y\'\'(L)=k(L^4/12+L^3/6)+AL+B=0
INtegrating. w.r.t. x again
y\'(x)=k(x^5/60+x^4/24)+Ax^2/2+Bx+C
y\'(0)=C=0
y\'(x)=k(x^5/60+x^4/24)+Ax^2/2+Bx
y(x)=k(x^6/360+x^5/120)+Ax^3/6+Bx^2/2+D
y(0)=0 gives D=0
y(x)=k(x^6/360+x^5/120)+Ax^3/6+Bx^2/2
y(L)=y(x)=k(L^6/360+L^5/120)+AL^3/6+BL^2/2=0
k(L^4/360+L^3/120)+AL/6+B/2=0
Hence, k(L^4/60+L^3/20)+AL+3B=0
From previous equation
k(L^4/12+L^3/6)+AL+B=0
Subtracting gives
k(L^4/60+L^3/20)+2B-k(L^4/12+L^3/6)=0\\\\
2B+k(-L^4/15-7L^3/60)=0
B=k(L^4/30+7L^3/120)
k(L^4/60+L^3/20)+AL+3B=0
k(L^4/60+L^3/20)+AL+k(L^4/10+7L^3/40)=0
AL+k(7L^4/60+9L^3/40)=0
A=-k(7L^3/60+9L^2/40)
