Random variables x and y are independent with PDFs fXx13 ex3
Random variables x and y are independent with PDF\'s fX(x)={1/3 e^-x/3 x GE 0, 0 otherwise fY(y)={ 1/2e^-y/2 y GE 0, 0 otherwise Find P(x > y). Find E[xy]. What is Cos(x,y)?
Solution
(a)
integral (0->infinity) ( integral(y->infinity) (1/3 e^(-x/3))dx ) dy
=integral (0->infinity) ( integral(y->infinity) (1/3 * e^(-x/3) * (-3) ) dy
=integral (0->infinity) ( (y->infinity) ( -e^(-x/3) ) dy
=integral (0->infinity) (e^(-y/3) dy
=(0->infinity) (-3e^(-y/3)
= (0 + 3)
= 3 Answer
(b)
E(X) = integral (0->infinity) 1/3 e^(-x/3))dx
= (0->infinity) 1/3 * e^(-x/3) * -3
= (0->infinity) -e^(-x/3)
= 0 +1
=1
E(Y) = integral (0->infinity) 1/2 e^(-y/2))dx
= (0->infinity) 1/2 * e^(-y/2) * -2
= (0->infinity) -e^(-y/2)
= 0 +1
=1
Therefore,
E(XY) = E(X)*E(Y) = 1*1 =1 Answer
(c)
COV(x,y) = E(XY) - E(X)*E(Y)
= 1 - 1*1
=1-1
= 0 Answer
![Random variables x and y are independent with PDF\'s fX(x)={1/3 e^-x/3 x GE 0, 0 otherwise fY(y)={ 1/2e^-y/2 y GE 0, 0 otherwise Find P(x > y). Find E[xy]. Random variables x and y are independent with PDF\'s fX(x)={1/3 e^-x/3 x GE 0, 0 otherwise fY(y)={ 1/2e^-y/2 y GE 0, 0 otherwise Find P(x > y). Find E[xy].](/WebImages/13/random-variables-x-and-y-are-independent-with-pdfs-fxx13-ex3-1017436-1761525857-0.webp)