You choose 25 advertisements from a large amount of advertis

You choose 25 advertisements, from a large amount of advertisments, for apartments at random and calculate that their mean monthly rent is $508, and the standard deviation is $78.

1. What would the standard error of the mean be?

2. Construct a 95% confidence interval for the mean monthly rent of all advertised one bedroom apartments.

3. Now, conduct a 90% confidence interval, would the margin of error be smaller or larger than the 95%? Explain why.

Solution

1.

SE = s/sqrt(n)

= 78/sqrt(25)

= 15.6 [ANSWER]
******************

2.

Note that              
Margin of Error E = t(alpha/2) * s / sqrt(n)              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    508          
t(alpha/2) = critical t for the confidence interval =    2.063898562          
s = sample standard deviation =    78          
n = sample size =    25          
df = n - 1 =    24          
Thus,              
Margin of Error E =    32.19681756          
Lower bound =    475.8031824          
Upper bound =    540.1968176          
              
Thus, the confidence interval is              
              
(   475.8031824   ,   540.1968176   ) [ANSWER]

*********************

3.

Note that              
Margin of Error E = t(alpha/2) * s / sqrt(n)              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.05          
X = sample mean =    508          
t(alpha/2) = critical t for the confidence interval =    1.71088208          
s = sample standard deviation =    78          
n = sample size =    25          
df = n - 1 =    24          
Thus,              
Margin of Error E =    26.68976045          
Lower bound =    481.3102396          
Upper bound =    534.6897604          
              
Thus, the confidence interval is              
              
(   481.3102396   ,   534.6897604   ) [ANSWER]

As we can see, this has a SMALLER MARGIN OF ERROR than the 95% confidence inetrval. This is so because larger confidence levels give a higher critical t score, which increase the margin of error.

You choose 25 advertisements, from a large amount of advertisments, for apartments at random and calculate that their mean monthly rent is $508, and the standar
You choose 25 advertisements, from a large amount of advertisments, for apartments at random and calculate that their mean monthly rent is $508, and the standar

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site