Confidence interval for mean p when o is known Generate 1000
Confidence interval for mean p when o is known. Generate 1000 random samples of sample size 40 from a normal distribution with mu = 100 and sigma = 15. Compute sample mean (X) for each sample. There will be 1000 sample means. Compute 95% confidence interval for mu for each sample. Compute the proportion of intervals do contain the true mean mu = 100. Draw confidence intervals horizontally with a vertical line for mu = 100.
Solution
R Command:
data=matrix(0,1000,40)
for(i in 1:1000)
{
data[i,]=rnorm(40,100,15)
}
m=rep(0,1000)
for(i in 1:1000)
{
m[i]=mean(data[i,])
}
c1=rep(0,1000)
c2=rep(0,1000)
for(i in 1:1000)
{
c1[i]=mean(data[i,])-(sd(data[i,])*2.02269/sqrt(40))
c2[i]=mean(data[i,])+(sd(data[i,])*2.02269/sqrt(40))
}
c=0
for(i in 1:1000)
{
if(c1[i]<100 && c2[i]>100)
c=c+1;
}
c=c/1000
d) ans 0.953
