Use technology to construct the confidence intervals for the
Use technology to construct the confidence intervals for the population variance
sigma squared 2
and the population standard deviation
.
Assume the sample is taken from a normally distributed population.
c=0.95,
s=33,
n=17
Solution
Confidence Interval
CI = (n-1) S^2 / ^2 right < ^2 < (n-1) S^2 / ^2 left
Where,
S = Standard Deviation
^2 right = (1 - Confidence Level)/2
^2 left = 1 - ^2 right
n = Sample Size
Since aplha =0.05
^2 right = (1 - Confidence Level)/2 = (1 - 0.95)/2 = 0.05/2 = 0.025
^2 left = 1 - ^2 right = 1 - 0.025 = 0.975
the two critical values ^2 left, ^2 right at 16 df are 28.8454 , 6.908
S.D( S^2 )=33
Sample Size(n)=17
Confidence Interval = [ 16 * 1089/28.8454 < ^2 < 16 * 1089/6.908 ]
= [ 17424/28.8454 < ^2 < 17424/6.9077 ]
Confidence Interval Variance = [ 604.0478 , 2522.4025 ]
Confidence Interval S.D = [ Sqrt(604.0478) < < Sqrt(2522.4025) ] = [ 24.57 < < 50.22 ]
