4 Verify the identity tan x sec x cos x 1 sin x 5 Using t
4) Verify the identity tan x + sec x = (cos x) / (1- sin x)
5) Using the Pythagorean Identity sin^2 x + cos ^2 x = 1, derive the other two:
a) tan ^2 x + 1 = sec ^2 x
b) 1 + cot ^2 x = csc ^2 x
Solution
4) tan x + sec x = (sinx + 1)/cosx = (1 - sin^2x)/cosx*(1 - sinx) = cos^2x/[cosx*(1 - sinx)]
= (cos x) / (1- sin x)
5) Given sin^2 x + cos ^2 x = 1
Dividing by cos ^2 x, tan^2x + 1 = sec ^2 x
b) Given sin^2 x + cos ^2 x = 1
Dividing by sin ^2 x, 1 + cot^2x = csc^2 x
