Two parallel pumppipe assemblies shown in Fig 810 deliver wa
Solution
a)
For pressure drop to be equal in both the pipes,
2.1*1010 F12 = 3.6*1010 F22
F12 = 1.714 F22..............eqn1
Also by mass conservation,
F1 + F2 = 0.01...............eqn2
Power input = Pressure drop*Flow rate / Efficiency
Since efficiency is constant we drop it from calculations.
Power input for both pumps = 2.1*1010 F12 *F1 + 3.6*1010 F22 * F2
= 2.1*1010 F13 + 3.6*1010 F23
Hence, objective function is to minimize 2.1*1010 F13 + 3.6*1010 F23
Constraint is F1 + F2 = 0.01 or F1 + F2 - 0.01 = 0
b)
L(F1, F2, l) = (2.1*1010 F13 + 3.6*1010 F23) + l*(F1 + F2 - 0.01)
delL / del F1 = 6.3*1010 F12 + l = 0
delL / del F2 = 10.8*1010 F22 + l = 0
delL / del l = F1 + F2 - 0.01 = 0
Solving these eqns we get,
F1 = sqrt [-l / (6.3*1010)]
F2 = sqrt [-l / (10.8*1010)]
sqrt [-l / (6.3*1010)] + sqrt [-l / (10.8*1010)] - 0.01 = 0
sqrt (-l) / (2.51*105) + sqrt (-l) / (3.286*105) - 0.01 = 0
Solving it, we get l = -2025164
Thus, F1 = sqrt [2025164 / (6.3*1010)]
F1 = 0.00569
F2 = 0.01 - F1
F2 = 0.00433

