A study of the attendance at the University of Alabamas bask

A study of the attendance at the University of Alabama\'s basketball games revealed that the distribution of attendance is normally distributed with a mean of 9,650 and a standard deviation of 1,900.

What is the probability a particular game has an attendance of 13,500 or more? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)

What percent of the games have an attendance between 8,000 and 11,500? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)

Ten percent of the games have an attendance of how many or less?

A study of the attendance at the University of Alabama\'s basketball games revealed that the distribution of attendance is normally distributed with a mean of 9,650 and a standard deviation of 1,900.

Solution

A)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    13500      
u = mean =    9650      
          
s = standard deviation =    1900      
          
Thus,          
          
z = (x - u) / s =    2.03      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   2.03   ) =    0.02117827 [answer]


**************
B)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    8000      
x2 = upper bound =    11500      
u = mean =    9650      
          
s = standard deviation =    1900      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -0.87      
z2 = upper z score = (x2 - u) / s =    0.97      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.192150202      
P(z < z2) =    0.833976754      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.641826552   [ANSWER]

**********************

C)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.1      
          
Then, using table or technology,          
          
z =    -1.281551566      
          
As x = u + z * s,          
          
where          
          
u = mean =    9650      
z = the critical z score =    -1.28      
s = standard deviation =    1900      
          
Then          
          
x = critical value =    7218   [ANSWER]  
  

A study of the attendance at the University of Alabama\'s basketball games revealed that the distribution of attendance is normally distributed with a mean of 9
A study of the attendance at the University of Alabama\'s basketball games revealed that the distribution of attendance is normally distributed with a mean of 9

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site