Find the minimum and maximum values of the function subject
Solution
1 ) Given that
f( x , y) = 3x + 2y + 4z subject to x2 + 2y2 + 6z2 = 1
Let g(x , y) = x2 + 2y2 + 6z2 = 1
Using legrange multipliers finding maxima and minima
f(x,y) = g(x,y)
< 3 , 2 , 4 > = < 2x , 4y , 12z >
.2x = 3 , .4y = 2 , .12z = 4
x = 3/2 , y = 2/4 , z = 4/12
x = 3/2 , y = 1/2 , z = 1/3
Substitute x , y , z values in g(x,y)
x2 + 2y2 + 6z2 = 1
( 3/2 )2 + 2( 1/2 )2 + 6(1/3 )2 = 1
123 / 362 = 1
123 = 362
2 = 123/36
2 = 41/12
= ± 123/6
x = 3/2 = (3/2)(1/) = (3/2)(± 6/123) = ± 9/123 = 9/123 , - 9/123
y = 1/2 = (1/2)(1/) = (1/2)(± 6/123) = ± 3/123 = 3/123 , -3/123
z = 1/3 = (1/3)(1/) = (1/3)(± 6/123) = ± 2/123 = 2/123 ,-2/123
Substitute x , y , z in f(x,y) = 3x + 2y + 4z
= 3(9/123) + 2(3/123) + 4(2/123)
= 27/123 + 6/123 + 8/123
= 41/123
= 123 /3
Therefore,
Maximum value occurs at f( 9/123 , 3/123 , 2/123 ) = 123 /3
Minimum value occurs at f( -9/123 , -3/123 , -2/123 ) = -123 /3
