Solve the IVP y6y8y3sin2t y00 y00 ytSolutionGiven y6y8y3sin2
Solve the IVP
y\'\'+6y\'+8y=-3sin(2t)
y(0)=0
y\'(0)=0
y(t)=?
Solution
Given
y\'\'+6y\'+8y=-3sin(2t)
converting this trigonometric form to exponential form
we know sint = e^(it) - e^(-it) / 2i
sin(2t) = e^(2it) - e^(-2it) / 2i
Y\'\' + 6Y\' + 8Y=0
r^2 + 6r+8 =0
r^2 + 4r +2r +8=0
r(r+4) + 2(r+4) =0
(r+2) (r+4)=0
r= -2 and r=-4
y(t) = C1 e^(-4it) + C2 e^(-8it)
= A e^(-4it) + Bt e^(-8it)
= A e^(-4it) +Be^(-8it) - Bt e^(-8it)
= A e^(-4it) -Be^(-8it) -Be^(-8it) - Bt e^(-8it)
= A e^(-4it) -2 Be^(-8it) - Bt e^(-8it)
= A e^(-4it) -2 Be^(-8it) + Bt e^(-8it) -A e^(-4it) -Be^(-4it) + Bte^(-8it) -2Ae^(-4it) -2Bte^(-8it)
= -2Ae^(-4it) - 3Be^(-8it)
-2Ae^(-4it) - 3Be^(-8it) = 3(e^(-4it)/2 + e^(-8it)/2)
comparing both sides we get
A = -3/4 and B = -3/6
from here y(t) = -3e^(-4it)/4 -3e^(-8it)/6
hence this is the required solution.
