Find a solution to y 4y 5y 2e2t using variation of parame
Solution
First we solve the homogeneous ode.
y\'\'-4y\'-5y=0
Let, y=exp(kt)
Substituting gives
k^2-4k-5=0
k^2-5k+k-5=0
k=5,-1
So, complementary solution ie solution to homogeneous ode is
yh= a exp(5t)+b exp(-t)
Now we look for a particular solution.
IN variation of parameters method we guess particular solution based on complementar solution as
yp= P(x) exp(5t) +Q(x) exp(-t)
with the condition:
P\' exp(5t)+Q\' exp(-t)=0
yp\'= 5P exp(5t)-Q exp(-t)
yp\'\'=5P\' exp(5t)-Q\' exp(-t)+25 exp(5t)+Q exp(-t)
Subtituting gives
5P\' exp(5t)-Q\' exp(-t)+25 P exp(5t)+Q exp(-t)-20P exp(5t)+4Q exp(-t) -5P exp(5t)- 5Q exp(-t)=2e^{2t}
5P\' exp(5t)- Q\' exp(-t)=2 e^(2t)
P\' exp(5t)+Q\' exp(-t)=0
Hence, Q\'= -P\' exp(6t)
5P\' exp(5t)+P\' exp(5t)= 2 e^(2t)
6P\'= exp(-3t)
Integrating gives
6P= -exp(-3t)/3
P = -exp(-3t)/18
Q\' = -P\' exp(6t)= -exp(3t)/6
Q = -exp(3t)/18
Hence particular solution is
yp=-exp(2t)/18-exp(2t)/18=-exp(2t)/9
So general solution is
y=a exp(5t)+b exp(-t)-exp(2t)/9

