Use Gauss elimination to solve 4x1 x2 x3 2 5x1 x2 2x3

Use Gauss elimination to solve: 4x_1 + x_2 - x_3 = -2 5x_1 + x_2 + 2x_3 = 4 6x_1 + x_2 + x_3 = 6 Employ partial pivoting and check your answers by substituting them into the original equations.

Solution

4x1 + x2 - x3 = -25

x1 + x2 + 2x3 = 4

6x1 + x2 + x3 = 6

Rewrite the system in matrix form and solve it by Gaussian Elimination (Gauss-Jordan elimination)

  4 1 -1 -2

5 1 2 4

6 1 1 6

R1 R1 / 4

1 0.25 -0.25 -0.5

5 1 2 4

6 1 1 6

R2 R2 - 5 R1 ;

R3 R3 - 6 R1

1 0.25 -0.25 -0.5

0   -0.25 3.25 6.5

0 -0.5 2.5 9

R2 R2 / -0.25

1 0.25 -0.25 -0.5

0 1 -13   -26

0 -0.5 2.5 9

R1 R1 - 0.25 R2;

R3 0.5 R2 + R3

1 0 3 6

0 1 -13 -26

0 0 -4 -4

R3 / -4 R3

1 0 3 6

0 1 -13 -26

0 0 1 1

R1 R1 - 3 R3;

R2 13R3 + R2

1 0 0 3

0 1 0 -13

0 0 1 1

x1 = 3x2 = -13x3 = 1

Make a check:

4·3 + (-13) - 1 = 12 - 13 - 1 = -2
5·3 + (-13) + 2·1 = 15 - 13 + 2 = 4
6·3 + (-13) + 1 = 18 - 13 + 1 = 6

Check completed successfully.

Answer:

x1 = 3

x2 = -13

x3 = 1

 Use Gauss elimination to solve: 4x_1 + x_2 - x_3 = -2 5x_1 + x_2 + 2x_3 = 4 6x_1 + x_2 + x_3 = 6 Employ partial pivoting and check your answers by substituting
 Use Gauss elimination to solve: 4x_1 + x_2 - x_3 = -2 5x_1 + x_2 + 2x_3 = 4 6x_1 + x_2 + x_3 = 6 Employ partial pivoting and check your answers by substituting

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site