heres info to help A The total sales amount for each entore
here\'s info to help.
A. The total sales amount for each entore marking period (start, end) is a population
B. µ= Mar Per (Start/End) sales total
3
C. a=0.05
Type of study Guides
1a
1b
2a
2b
3a
3b
4a
4b
Angles
400
500
400
500
400
500
400
500
proofs
1200
1500
1200
1500
1200
1500
1200
1500
triangles
400
500
400
500
400
500
400
500
Samples
I
II
III
N
8
8
8
Sum
3600
10800
3600
Mean
450
1350
450
Sum (x^2)
1640000
14760000
1640000
Variance
2857.1429
25714.285
2857.1429
Std dev
53.4522
160.3567
53.4522
Std error
18.8982
56.6947
18.8982
Anova Table
Source
SS
df
MS
F
p
Treatment
4320000
2
2160000
206.18
0.0001
Error
220000
21
10476.191
Total
4540000
23
Tukey HSD Test
HSD(0.05) =128.99,
HSD (0.1)
167.17
M1VM2
p<0.1
Reject hypothesis mu1 = mu2
M1VM3
Not significant
M2VM3
p<0.1
Reject hypothesis mu1 = mu2
HSD
Absolute unsigned difference
1. Do a Wilcoxon signed-rank test for matched data pairs. Tell how the results affect sales predictions. Let the Mar Per Start sales and the Mar Per End sales be matched with the data pairs for each study-guide-type for the entire school year. Assume the histogram for the contingency table is systematic, and the median is 0.
Ho= [(Mar Per # start Sales) – Mar Per # End Sales)] = 0
H1= [(Mar Per # end Sales) – Mar Per # End Sales)] 0
| Type of study Guides | 1a | 1b | 2a | 2b | 3a | 3b | 4a | 4b |
| Angles | 400 | 500 | 400 | 500 | 400 | 500 | 400 | 500 |
| proofs | 1200 | 1500 | 1200 | 1500 | 1200 | 1500 | 1200 | 1500 |
| triangles | 400 | 500 | 400 | 500 | 400 | 500 | 400 | 500 |
Solution
with the values of anova table
F=206.18 and
p-value =0.0001
as you can see the test is 2 tailed because it can be minor or major than 0 in the alternative hypotesis
a=0.05
critical value = a/2 = 0.025
if p-value > 0.025 reject Ho
since p-value=0.0001 is minor than 0.025 we accept Ho
conclusion
the Mar per # star sales and mar per # end sales dont have difference at 1-0.05 = 95% of confidence



