Choose the one alternative that best completes the statement
Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. Define the points P = (-2, 4) and Q = (-9, -4). Find the position vector corresponding to Vector PQ. (2, -4) (-7, -8) (7, 8) (-11, 0) Find the indicated vector. Let u = (9, 9), v = (1, 4). Find u - 4v. (18, -20) (10, -52) (5, -7) (13, 25) Let u = (1, 5|), v = (-4, 6). Find 4/5u + 3/5v. (19/5, 2/5) (-8/5, 38/5) (-12/5, 33/5) (38/5, -8/5) Let u = (7, -1), v = (-7, -2). Find 5/13u - 12/13v. (47/13, -11/13) (70/13, 12/31) 19/13, 119/13) (119/13, 19/13) Find v + u. v - (1/Squareroot 3, 1/Squareroot 3) and u = (1/Squareroot 3, -1/Squareroot 3) 1/Squareroot 3 i -1/Squareroot 3 j 2/Squareroot 3 I - 2/Squareroot 3 j 0 2/3 v = (1/Squareroot 2, 1/Squareroot 11) and u = (1/Squareroot 2, -1/Squareroot 11) 0 9/22 2/Squareroot 2 I 1/2 i 1/2 i - 1/11 I Find parametric equations for the line described below. The line through the points P(-1, -1, -7) and Q(6, 2, -3) x = 6t + 1, y = 3t + 1, z = 4t + 7 x = t + 6, y = t + 3, z = -7t + 4 x = 6t - 1, y = 3t - 1, z = 4t - 7 x = t - 6, y = t - 3, z = -7t - 4 Find a parameterization for the line segment beginning aP_1 and ending atP and ending atP_2. P_1(6, -5, 3) and P_2(0, -5, -4) x = 6t, y = -5t, z = 7t - 4, 0 lessthanorequalto t lessthanorequalto 1 x = 6t, y = -5, z = 7t - 4, 0 lessthanorequalto t lessthanorequalto 1 x = -6t + 6, y = -5, z = -7t + 3, 0 lessthanorequalto t lessthanorequalto 1 x = -6t + 6, y = -5t, z = -7t + 3, 0 lessthanorequalto t lessthanorequalto 1
Solution
Solved first 6 problems, please post one more questions to get the remaining answers
Q1)
PQ = <-9,-4> - <-2,4> = <-9+2,-4-4> = <-7,-8>
Hence the correct answer is Option B
Q2)
u - 4v
=> <9,9> - 4<1,4>
=> <9,9> - <4,16>
=> <5,-7>
Hence the correct answer is Option C
Q3)
4/5 * u + 3/5 * v
=> 4/5 * <1,5> + 3/5 * <-4,6>
=> <4/5,4> + <-12/5,18/5>
=> <-8/5,38/5>
Hence the correct answer is Option B
4)
5/13 * u - 12/13 * v
=> 5/13 * <7,-1> - 12/13 * <-7,-2>
=> <35/13,-5/13> + <84/13,24/13>
=> <119/13,19/13>
Hence the correct answer is Option D
5)
v + u
=> <1/sqrt(3),1/sqrt(3)> + <1/sqrt(3),-1/sqrt(3)>
=> <2/sqrt(3),0>
6)
v + u
=> <1/sqrt(2),1/sqrt(11)> + <1/sqrt(2),-1/sqrt(11)>
=> sqrt(2)i
Hence the correct answer is Option C

