Following are measurements of tensile strength in ksi x and

Following are measurements of tensile strength in ksi (x) and Brinell hardness (y) for 10 specimens of cold drawn copper. Assume that tensile strength and Brinell hardness follow a bivariate normal distribution.

______________________________________________

           x                                                   y                                         

            106.2                                      35.0

            106.3                                      37.2

            105.3                                      39.8

            106.1                                      35.8

            105.4                                      41.3   

            106.3                                      40.7

            104.7                                     38.7

            105.4                                      40.2

            105.5                                      38.1

            105.1                                      41.6                           

a) Find a 95% confidence interval for p, the population correlation between tensile strength and Brinell hardness.

b) Can you conclude that p<0.3?

c) Can you conclude that p =/= 0?

Solution

We assume that the data points are a random sample from a bivariate normal distribution. In computing the correlation coefficiient, we find

Sxx = Px ^2 i ? ( Pxi) ^2/n = 111579.79 ? 6 (1056.3)^2/10 = 2.821,

Sxy = Pxiyi ?( Pxi)(Pyi)/n = 41020.79?(388.4)(1056.3)/10 = ?5.902

so R < 0 and Syy = Py ^2 i ? ( Pyi) ^2/n = 15132.6 ? (388.4) ^2/1047.144 = 47.144. Hence

R 2 = S^ 2 xy / SxxSyy = (?5.902^)2 /2.821

Following are measurements of tensile strength in ksi (x) and Brinell hardness (y) for 10 specimens of cold drawn copper. Assume that tensile strength and Brine

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site