If u and y have a bivariate normal distribution with zero me

If u and y have a bivariate normal distribution with zero means, show that cov(u^2, y^2) = 2[cov(u, u)]^2.

Solution

cov (u2,v2) = E(u2v2) -E(u2)E(v2)

Cov (u,v) = E(UV)-E(u)E(V) = E(uv) as mean of u and v are 0

Hence 2{ cov (u,v) }2  = 2{E(uv)}^2

But for any variable z, Var (z) = E(z^2) -{E(z)}^2

Hence cov  (u2,v2) = E(u2v2) -E(u2)E(v2) = E(u2v2) -(varu)varv

=2{ cov (u,v) }2

 If u and y have a bivariate normal distribution with zero means, show that cov(u^2, y^2) = 2[cov(u, u)]^2. Solutioncov (u2,v2) = E(u2v2) -E(u2)E(v2) Cov (u,v)

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site