Show that In x Squareroot x2 1 In x Squareroot x2 1Solu
Show that In (x - Squareroot x^2 - 1) = -In (x + Squareroot x^2 - 1)
Solution
ln (x - sqrt(x^2 - 1))= -ln(x+ sqr(tx^2-1))
Starting with the right side
-ln(x+sqrt(x^2-1))
and - ln a=ln a^-1
Therefore
ln(x+sqrt(x^2-1))^-1= ln(1/(x+sqrt(x^2-1)))
rationalising the denominator
ln(((1/(x+sqrt(x^2-1))((x-sqrt(x^2-1)/(x-sqrt(x^2-1)))= ln(x-sqrt(x^2-1)/(x^2-x^2+1))
ln(x-sqrt(x^2-1))
