Suppose there are two countries in the world and both can be
Solution
(a) In each economy, without export function (closed economy),
Y = C + G + I
(1) Country 1:
Y1 = 0.8Yd1 + 200 + 200 = 0.8 x (Y1 - T1) + 400
Y1 = 0.8 x (Y1 - 100) + 400
Y1 = 0.8Y1 - 80 + 400
0.2Y1 = 320
Y1 = 1,600 [equilibrium income]
(2) Country 2:
Y2 = 0.5Yd2 + 200 + 180 = 0.5 x (Y2 - T2) + 380
Y2 = 0.5 x (Y2 - 200) + 380
Y2 = 0.5Y2 - 100 + 380
0.5Y2 = 280
Y2 = 560 [equilibrium income]
(b) Export function is: NX = X - M
(1) Country 1
NX1 = 240 - 0.4Yd1 = 240 - 0.4 x (Y1 - T1)
NX1 = 240 - 0.4 x (Y1 - 100)
NX1 = 240 - 0.4Y1 + 40
NX1 = 280 - 0.4Y1
(2) Country 2
NX2 = 630 - 0.4Yd2 = 630 - 0.4 x (Y2 - T2)
NX2 = 630 - 0.4 x (Y2 - 200)
NX2 = 630 - 0.4Y2 + 80
NX2 = 710 - 0.4Y2
(c) Equilibrium: Y = C + I + G + NX
(1) Country 1
Y1 = 0.8Y1 - 80 + 400 + NX1 = Y1 = 0.8Y1 + 320 + 280 - 0.4Y1
(1 + 0.4 - 0.8)Y1 = 600
0.6Y1 = 600
Y1 = 1,000
(2) Country 2
Y2 = Y2 = 0.5Y2 - 100 + 380 + NX2 = Y2 = 0.5Y2 + 280 + 710 - 0.4Y2
(1 + 0.4 - 0.5)Y2 = 990
0.9Y2 = 990
Y2 = 1,100
(d) Private saving, S = Y - C
(1) Country 1
S1 = Y1 - C1 = Y1 - 0.8Yd1 = Y1 - 0.8 x (Y1 - T1)
S1 = Y1 - 0.8 x (Y1 - 100)
S1 = Y1 - 0.8Y1 + 80
S1 = 0.2 x Y1 + 80 = 0.2 x 1,000 + 80 = 200 + 80
S2 = 280
(2) Country 2
S2 = Y2 - C2 = Y2 - 0.5 x (Y2 - 200)
S2 = Y2 - 0.5Y2 + 100
S2 = 0.5Y2 + 100 = (0.5 x 1,100) + 110 = 550 + 110 = 660
** Y1 and Y2 values for export-included GDP are used.
NOTE: First 4 sub-questions are answered.

