Find a quadratic model for the sequence y0505x4 y 05x2153 y
Find a quadratic model for the sequence. y-0.5%-0.5x-4 y = 0.5x2-1.5-3 y 4.5x2-21.5x+21 y =-4.5x2 + 21.4x-21
Solution
1) Quadratic model for the sequnce:
x = 0 y =-4
x=1 ; y =-4
x=2 ; y =-3
x=3 ; y = -1
y = ax^2 +bx +c
Plug these values to form equations to solve a, b, c:
-4 = c
Now we have the equations with constnat term = -4 as Option 1
y = 0.5x^2 -0.5x - 4
Lets verify one points i.e. x= 3 ; y =-1
-1 = 0.5(3)^2 -0.5(3) -4 It satisfies
So, option A
2) first diffenerces ------ second differences
a1 -1
a2 1 --------( 2)
a3 -1 ---------- (2) ----------------------------- (0)
a4 5 ---------( 6) ------------------------------(4)
a5 15 ------- ( 10) ---------------------------(4)
Since the second differences are not equal sequnce is not quadratice
So, Option : first differenec : 2, 2 , 6 , 10 not quadratic
