Solve the equation Log2x3 log2 x9 4SolutionGiven equation i

Solve the equation. Log_2(x-3) + log_2 ?(x-9) =4

Solution

Given equation is

    log2(x-3) + log2(x-9) = 4

   log2 (x-3)(x-9) = 4                             [ log a + log b = log ab ]

(x-3)(x-9) = 24

   (x-3)(x-9) = 16

   x2 - 12x + 27 = 16

   x2 - 12x + 11 = 0

    x2-x-11x + 11 = 0

   x (x-1) -11 (x-1) =0

      (x-1) (x-11) = 0

        x = 1,11

Therefore,

         x = 1,11

 Solve the equation. Log_2(x-3) + log_2 ?(x-9) =4SolutionGiven equation is log2(x-3) + log2(x-9) = 4 log2 (x-3)(x-9) = 4 [ log a + log b = log ab ] (x-3)(x-9) =

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site