Let X have the uniform distribution on the interval 0 1 Find
Let X have the uniform distribution on the interval [0, 1]. Find EX Repeat part a where X is uniform on the interval [a, b].
Solution
a)
Here,
f(x) = 1, 0<x<1
0, otherwise
Thus,
EX = Integral [x f(x) dx]
= Intergal [x dx]|(0,1)
= x^2/2|(0,1)
= 1/2 [ANSWER]
********************
b)
Here,
f(x) = 1/(b-a), a<x<b
0, otherwise
Thus,
EX = Integral [x f(x) dx]
= Intergal [x [1/(b-a)] dx]|(0,1)
=[1/(b-a)] x^2/2|(a,b)
= [1/(b-a)] [b^2 - a^2] /2
= [1/(b-a)] [(b+a)(b-a)] /2
= (b+a) /2 [ANSWER]
![Let X have the uniform distribution on the interval [0, 1]. Find EX Repeat part a where X is uniform on the interval [a, b].Solutiona) Here, f(x) = 1, 0<x&l Let X have the uniform distribution on the interval [0, 1]. Find EX Repeat part a where X is uniform on the interval [a, b].Solutiona) Here, f(x) = 1, 0<x&l](/WebImages/14/let-x-have-the-uniform-distribution-on-the-interval-0-1-find-1020062-1761527478-0.webp)