Statistics A1 The following data values are the ages and gen
Solution
Getting the mean, X,
X = Sum(x) / n
Sum(x) = 563
Thus,
X = 20.85185185 [answer, mean]
*******************************************
Setting up tables,
x x - X (x - X)^2
25 4.148148148 17.20713306
20 -0.851851852 0.725651578
23 2.148148148 4.614540466
21 0.148148148 0.021947874
18 -2.851851852 8.133058985
20 -0.851851852 0.725651578
21 0.148148148 0.021947874
21 0.148148148 0.021947874
25 4.148148148 17.20713306
19 -1.851851852 3.429355281
23 2.148148148 4.614540466
20 -0.851851852 0.725651578
31 10.14814815 102.9849108
21 0.148148148 0.021947874
19 -1.851851852 3.429355281
18 -2.851851852 8.133058985
19 -1.851851852 3.429355281
22 1.148148148 1.31824417
19 -1.851851852 3.429355281
18 -2.851851852 8.133058985
19 -1.851851852 3.429355281
19 -1.851851852 3.429355281
20 -0.851851852 0.725651578
23 2.148148148 4.614540466
21 0.148148148 0.021947874
19 -1.851851852 3.429355281
19 -1.851851852 3.429355281
Thus, Sum(x - X)^2 = 207.4074074
Thus, as
s^2 (variance) = Sum(x - X)^2 / (n - 1)
As n = 27
s^2 = 7.977207977 [answer, variance]
Thus,
s = 2.824395152 [answer, standard deviation]
