Exercise 1502 Consider the following data for a dependent va

{Exercise 15.02}

Consider the following data for a dependent variable y and two independent variables, x1 and x2.

Round your all answers to two decimal places. Enter negative values as negative numbers, if necessary.

a. Develop an estimated regression equation relating y to x1.

= + x1

Predict y if x1 = 35.

=

b. Develop an estimated regression equation relating y to x2.

= + x2

Predict y if x2 = 15.

=

c. Develop an estimated regression equation relating y to x1 and x2.

= + x1 + x2

Predict y if x1 = 35 and x2 = 15.

=

x1 x2 y
30 12 94
47 11 109
25 17 113
51 17 178
41 5 95
52 20 175
74 8 170
36 13 118
59 14 142
76 16 212

Solution

A)

Using technology, we get              
              
slope =    1.940399106          
intercept =    45.32640388          
              
Thus, the regression line is              
              
y^ = 45.32640388 +     1.940399106 x1 [answer]

Thus, if x1 =    35      
          
Then          
          
y^ =    113.2403726 [ANSWER]

********************

b)

Using technology, we get              
              
slope =    4.47148289          
intercept =    81.12927757          
              
Thus, the regression line is              
              
y^ =    81.12927757 + 4.47148289 x2 [ANSWER]
              
Thus, if x2 =    15          
              
Then              
              
y^ =    148.2015209 [ANSWER]

***********************

c)

Using technology, we get

y^ = -17.40418474 + 1.965438042 x1 + 4.624148637 x2

Thus, if x1 = 35, x2 = 15,

y^ = -17.40418474 + 1.965438042*35 + 4.624148637*15
          
y^ = 120.7483763 [ANSWER]
      

{Exercise 15.02} Consider the following data for a dependent variable y and two independent variables, x1 and x2. Round your all answers to two decimal places.
{Exercise 15.02} Consider the following data for a dependent variable y and two independent variables, x1 and x2. Round your all answers to two decimal places.

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site