If the mean of a normal distribution is 40 and the standard
If the mean of a normal distribution is 40 and the standard deviation is 4, find P(38 < x < 46).
Solution
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    38      
 x2 = upper bound =    46      
 u = mean =    40      
           
 s = standard deviation =    4      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.5      
 z2 = upper z score = (x2 - u) / s =    1.5      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.308537539      
 P(z < z2) =    0.933192799      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.62465526      

