Evaluate the triple integral triple integralE x6ey dV where
Solution
Solution :
x6ey dV
0 z 25 - y2
when z = 0, y2 = 25 ==> y = ± 5 , -5 y 5
- 5 x 5
x6ey dV = x6ey dz dx dy
= x6ey [ z ] dx dy ( z from 0 to 25 - y2)
= x6ey ( 25 - y2 ) dx dy
= ey ( 25 - y2 ) [ x7/7 ] dy ( x from - 5 to 5 )
= ey ( 25 - y2 ) [ (1/7) - ( - 1/7) ] dy ( x from - 5 to 5 )
= 2/7ey ( 25 - y2 )] dy
Integrate by parts
u = 25 - y2
du = - 2y dy
dv = ey dy
v = ey
2/7ey ( 25 - y2 )] dy = 2/7 [ ey(25 - y2) - ey ( - 2y )] dy ]
= 2/7 [ ey(25 - y2) + 2 ey y dy ]
Again integrate by parts
u = y
du = dy
dv = ey dy
v = ey
= 2/7 [ ey(25 - y2) + 2 { yey - ey dy} ]
= 2/7 [ 25ey - ey y2 + 2 y ey - 2ey ]
= 2/7 [ ey { 2y - y2 + 23} ] from - 5 to 5
= 2/7 [ e5(10 - 25 + 23) - 1/e5(- 10 - 25 + 23) ]
= 2/7 [ 8e5 - 1/e5(- 12) ]
= 2/7 [ 8e5 + 12/e5 ]
= 2( 8e10 + 12 )/7e5
= 339.2532

