Determine whether each function is continuous xvalues Justif
Determine whether each function is continuous x-value(s). Justify using the continuity test. If di the type of discontinuity as Infinite, jump, or ref f(x) = x^2 - 3x; x+4. f(x) = squareroot 2x-4; x =10 f(x) = x/x divided 7 ; x = 0 and x= 7 f(x) = x/x^2 - 4 ; x = 2 and x = 4 f(x) = 3x-1 if x less than 2x if x 1 : x =1 
Solution
27)f(x)=x^2 -3x
limx->4-f(x)
=limx->4-x^2 -3x
=4^2 -3*4
=16-12
=4
limx->4+f(x)
=limx->4+x^2 -3x
=4^2 -3*4
=16-12
=4
f(4)=4^2 -3*4
=16-12
=4
limx->4-f(x)=f(4)=limx->4+f(x), so function is continous at x =4
........................................................
28)f(x)=(2x -4)
limx->10-f(x)
=limx->10-(2x-4)
=(2*10-4)
=(20-4)
=16
=4
limx->10+f(x)
=limx->10+(2x-4)
=(2*10-4)
=(20-4)
=16
=4
f(10)=(2*10-4)
=(20-4)
=16
=4
=4
limx->10-f(x)=f(10)=limx->10+f(x), so function is continous at x =10

