Find the number of solutions to x2 1 mod 108Solution108274 x
Find the number of solutions to x^2 1 (mod 108).
Solution
108=27*4
x^2=1 mod 108
So,
x^2=1 mod 27
x^2=1 mod 4
Hence,
x^2=1 mod 9
x=1, 8 mod 9
x=9m+1,9m-1
(9m+1)^2=81m^2+18m+1=18m+1 =1 mod 27
18m=0 mod 27
Hence, m=0 mod 3
So, x=27n+1,27n-1
x^2=1 mod 4
(27n+1)^2=(3n+1)^2=9n^2+6n+1=1 mod 4
9n^2+6n=0 mod 4
Hence, n=0 mod 2
x=54k+1,54k-1
So infinitely many solutions
If we are though looking for solution in the set {0,1,2,..,107}
Solutions are:1,55,,53,107
