What is the minimum number of nodes in an AVL tree of height

What is the minimum number of nodes in an AVL tree of height 8?

Let N(h) be the minimum number of nodes in an AVL tree of height h.

Solution

Given the height of the AVL tree is 8.

Let N(h) be the minimum number of nodes in AVL tree.

The formula to find minimum number of trees in an AVL tree is

N(h) = N(h-1)+N(h-2)+1

Here N(h) is a recursive function.For a recursive function N(1)=0 N(2) =1

Here height h = 8

So N(8) = N(8-1)+N(8-2)+1

N(8)= N(7)+N(6)+1

N(8) = [N(7-1)+N(7-2)+1]+ [N(6-1)+N(6-2)+1]+ 1

N(8)= [N(6)+N(5)+1]+ [N(5)+N(4)+1]+1

N(8)= N(6)+2*N(5)+N(4)+3

N(8)= [N(6-1)+N(6-2)+1]+ 2*[N(5-1)+N(5-2)+1]+[N(4-1)+N(4-2)+1]+3

N(8)= [N(5)+N(4)+1]+ 2*[N(4)+N(3)+1]+[N(3)+N(2)+1]+3

N(8)= N(5)+ 3*[N(4)+N(3)]+N(2)+7

N(8)= [N(5-1)+N(5-2)+1]+3*{ [N(4-1)+N(4-2)+1]+[N(3-1)+N(3-2)+1] }+7

N(8)= N(4)+N(3)+1+3*{ N(3)+N(2)+1+N(2)+N(1)+1}+7

N(8)= N(4)+N(3)+3*{ N(3)+N(2)+N(2)+N(1)}+14

N(8)= [N(4-1)+N(4-2)+1]+4*[N(3-1)+N(3-2)+1]+6*N(2)+3*N(1)+14

N(8)= N(3)+N(2)+1+4*[N(2)+N(1)+1]+6*N(2)+3*N(1)+14

N(8)= N(3-1)+N(3-2)+1+11*N(2)+7*N(1)+19

N(8)= N(2)+N(1)+11*N(2)+7*N(1)+20

N(8)= 12*N(2)+8*N(1)+20

N(8)= 12*1+8*0+20 Since N(1)=0 and N(2)=1

N(8)= 12+0+20

N(8)= 32

The minimum number of nodes in an AVL ttree of height 8 is 32.

What is the minimum number of nodes in an AVL tree of height 8? Let N(h) be the minimum number of nodes in an AVL tree of height h. SolutionGiven the height of

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site