Find the solutions to the intial value problems by using sol
Find the solutions to the intial value problems by using solutions of nonhomogeneous systems:
Find the solutions to the initial value problems: x\' = 4x - 6y + 10 y\' = x - y x(0) = 0, y(0) = 0Solution
First we solve associated homogeneous system
x\'=4x-6y
y\'=x-y
From second equation
x=y\'+y
x\'=y\'\'+y\'=4x-6y=4(y\'+y)-6y
y\'\'+y\'=4y\'-2y
y\'\'-3y\'+2y=0
Let,y=exp(kt)
Substituting gives
k^2-3k+2=0
k=1,2
So,
y=A exp(t)+B exp(2t)
y\'=A exp(t)+2B exp(2t)
x=y+y\'=2A exp(t)+3B exp(2t)
x=2A exp(t)+3B exp(2t)
Now for particular solution be
xp=C,yp=D
Substituting gives
0=4C-6D+10
0=C-D ie C=D
0=4C-6C+10
C=5=D
So,
x=2A exp(t)+3B exp(2t)+5
y=A exp(t)+B exp(2t)+5
x(0)=2A+3B+5=0
y(0)=A+B+5=0
Solving gives:
A=-10,B=5

