Given any Cartesian coordinates xy there are polar coordinat
Given any Cartesian coordinates, (x,y), there are polar coordinates (r,) with 2<2. (a) If (x,y)=(14,7) then (r,)=( , ), (b) If (x,y)=(17,10) then (r,)=( , ), (c) If (x,y)=(2,8) then (r,)=( , ), (d) If (x,y)=(9,8) then (r,)=( , ), (e) If (x,y)=(5,4) then (r,)=( , ), (f) If (x,y)=(0,9) then (r,)=(
Solution
a)
given (x,y)=(14,7)
r = sqrt(x2 + y2) = sqrt(196 + 49) = sqrt245 = 7sqrt5
= tan-1(y/x) = tan-1(-1/2) = 26.565
(r,) = (7sqrt5 , 26.565)
(b)
(x,y)=(17,10)
r = sqrt(289+100) = sqrt(389)
= tan-1(-10/17) = -30.4655
(r,)=(sqrt389 , -30.4655)
(c)
(x,y)=(2,8)
r = sqrt(4+64) = sqrt(68) = 2sqrt17
= tan-1(8/2) = 75.9637
(r,)=(2sqrt17 , 755.9637)
(d)
(x,y)=(9,8)
r = sqrt(81+64) = sqrt145
= tan-1(-8/9) =-41.6335
(r,)=(sqrt145 , -41.6335)
(e)
(x,y)=(5,4)
r = sqrt(25+16) = sqrt41
= tan-1(4/5) = 38.6598
(r,)=( sqrt41, 38.6598 )
(f)
(x,y)=(0,9)
r = sqrt(81) = 9
= tan-1(0) = 90
(r,)=( 9, 90)

