fg fg fg fgSolutionfx sqrt 4 x and gx sqrt x2 9 f gx fx g

f+g

f-g

f*g

f/g

Solution

f(x) = sqrt( 4 -x) and g(x) = sqrt( x^2 -9)

(f+ g)(x) = f(x) +g(x) = sqrt( 4-x)+ sqrt( x^2 -9)

( f-g)(x) = f(x) -g(x) = sqrt( 4-x) - sqrt( x^2 -9)

(f*g)(x) = f(x)*g(x) = sqrt( 4 -x) *  sqrt( x^2 -9) = sqrt{ (4-x)(x^2 -9) }

(f/g)(x) = f(x)/ g(x) = sqrt( 4-x)/sqrt( x^2 -9)

f+g f-g f*g f/gSolutionf(x) = sqrt( 4 -x) and g(x) = sqrt( x^2 -9) (f+ g)(x) = f(x) +g(x) = sqrt( 4-x)+ sqrt( x^2 -9) ( f-g)(x) = f(x) -g(x) = sqrt( 4-x) - sqrt

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site