7 Let n 5 For which primes p is 5 a quadratic residue mod p
Solution
For p=2
02=0, 12=1...5 is quadratic non residue mod 2
p=3
02=0, 12=1, 22=1....5 is quadratic non residue mod 3
p=5
02=0, 12=1, 22=4, 32=4, 42=1...5 is quadratic non residue mod 5
p=7
02=0, 12=1, 22=4, 32=2, 42=2, 52=4, 62=1...5 is quadratic non residue mod 7
p=11
02=0, 12=1, 22=4, 32=9, 42=5=> 5 is quadratic residue mod 11
p=13
02=0, 12=1, 22=4, 32=9, 42=3, 52=12, 42=3, 52=12, 62=10, 72=1, 82=12, 92=3, 102=9, 112=4, 122=1...5 is quadratic non residue mod 13
p=17
02=0, 12=1, 22=4, 32=9, 42=16, 52= 8, 62=2, 72=15, 82=13, 92=13, 102=15, 112=2, 122=8, 132=16, 142=9, 152=4, 162=1...5 is quadratic non residue mod 17
p=19
02=0, 12=1, 22=4, 32=9, 42=16, 52=6, 62=17, 72=11, 82=7, 92=15, 102=5=> 5 is quadratic residue mod 19
From the above pattern we see that (5/11) =1, (5/19) =1
And so the primes are 11,19,....
These are of the the form 3 mod(4)
Therefore p = 3mod(4) so that (5/p)=1
In other words p is of the form 4j+3 so that 5 is quadratic residue mod p
