Suppose that 40 of Iowans are in favor of a presidential can

Suppose that 40% of Iowans are in favor of a presidential candidate. A pollster selects a random sample of 10 Iowans and asks them about their opinions about the candidate. Let X be the number of people in the sample who are in favor of the candidate.

(a) What is the sample space of X?

(b) What is the distribution of X? 1

(c) What is the probability that 5 people in the sample are in favor of the candidate?

(d) What is the probability that 3 to 5 people in the sample are in favor of the candidate?

(e) What is the probability that at least 6 of the people in the sample are in favor of the candidate?

Solution

a)

X = {0,1,2,3,4,5,6,7,8,9,10}

b)

P(x) follows the binomial distribution,

P(x) = nCx 0.40^x 0.60^(n - x) [ANSWER]

***************

c)

Note that the probability of x successes out of n trials is          
          
P(n, x) = nCx p^x (1 - p)^(n - x)          
          
where          
          
n = number of trials =    10      
p = the probability of a success =    0.4      
x = the number of successes =    5      
          
Thus, the probability is          
          
P (    5   ) =    0.200658125 [ANSWER]

********************

d)

Note that the probability of x successes out of n trials is          
          
P(n, x) = nCx p^x (1 - p)^(n - x)          
          
where          
          
n = number of trials =    10      
p = the probability of a success =    0.4      
x = the number of successes =    3      
          
Thus, the probability is          
          
P (    3   ) =    0.214990848

Similarly,

P (    4   ) =    0.250822656

P (    5   ) =    0.200658125

Adding these probabilities,

P(3 to 5) = 0.666471629 [ANSWER]

**********************

E)

Note that P(at least 6) = 1 - P(at most 5).          
          
Using a cumulative binomial distribution table or technology, matching          
          
n = number of trials =    10      
p = the probability of a success =    0.4      
x = our critical value of successes =    6      
          
Then the cumulative probability of P(at most x - 1) from a table/technology is          
          
P(at most   5   ) =    0.833761382
          
Thus, the probability of at least   6   successes is  
          
P(at least   6   ) =    0.166238618 [ANSWER]

Suppose that 40% of Iowans are in favor of a presidential candidate. A pollster selects a random sample of 10 Iowans and asks them about their opinions about th
Suppose that 40% of Iowans are in favor of a presidential candidate. A pollster selects a random sample of 10 Iowans and asks them about their opinions about th

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site