Assume that N is normally distributed with a mean of 6 and a

Assume that N is normally distributed with a mean of 6 and a standard deviation of 3 Determine a value of n that solves each of the following P(NLTn) = 0.5 P(NGTn) = 0.95 P(nLTNLT9) = 0.2 P93LTNLTn) = 0.8

Solution

a)


First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.5      
          
Then, using table or technology,          
          
z =    0      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    6      
z = the critical z score =    0      
s = standard deviation =    3      
          
Then          
          
x = critical value =    6 [ANSWER]

**************************************

b)


First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.05      
          
Then, using table or technology,          
          
z =    -1.644853627      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    6      
z = the critical z score =    -1.644853627      
s = standard deviation =    3      
          
Then          
          
x = critical value =    1.065439119   [answer]

****************************************************

c)

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    9      
u = mean =    6      
          
s = standard deviation =    3      
          
Thus,          
          
z = (x - u) / s =    1      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z >   1   ) =    0.841344746

Thus, the left tailed area of N = n is 0.841344746 - 0.2 = 0.641344746.

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.641344746      
          
Then, using table or technology,          
          
z =    0.362055565      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    6      
z = the critical z score =    0.362055565      
s = standard deviation =    3      
          
Then          
          
x = critical value =    7.086166696   [ANSWER]

*************************
d)  

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    3      
u = mean =    6      
          
s = standard deviation =    3      
          
Thus,          
          
z = (x - u) / s =    -1      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z >   -1   ) =    0.158655254

Thus, the left tailed area of N = n is 0.158655254 + 0.8 = 0.958655254.

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.958655254      
          
Then, using table or technology,          
          
z =    1.735289775      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    6      
z = the critical z score =    1.735289775      
s = standard deviation =    3      
          
Then          
          
x = critical value =    11.20586932   [ANSWER]  

 Assume that N is normally distributed with a mean of 6 and a standard deviation of 3 Determine a value of n that solves each of the following P(NLTn) = 0.5 P(N
 Assume that N is normally distributed with a mean of 6 and a standard deviation of 3 Determine a value of n that solves each of the following P(NLTn) = 0.5 P(N
 Assume that N is normally distributed with a mean of 6 and a standard deviation of 3 Determine a value of n that solves each of the following P(NLTn) = 0.5 P(N

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site