233333 Let x0 2and use Newtons Method to calculate the next
2.33333 Let x_0 = 2|and use Newton\'s Method to calculate the next four approximations to a squareroot of x^4 - 6x^2 +x + 3.| (Use decimal notation. Give your answers to five decimal places.)
Solution
Acording to Newtons method;
Xn+1 = Xn - f(Xn) / f\'(Xn)
Given Equation is
F(X) = X4 _6X2 + X + 3
F\'(X) = 4X3 - 12X + 1
X0 = 2
X1 = X0 - f(X0) / f\'(Xo)
X1 = 2 - (-3) / 9
X1 = 2.33333
X2 = X1 - f(X1) / f\'(X1)
= 2.33333 - (2.30856/23.81463)
X2 = 2.23639
X3 = X2 - f(X2) / f\'(X2)
= 2.23639 - (0.24215/18.90400)
X3 = 2.22358
X4 = X3 - f(X3)/f\'(X3)
= 2.22358 - (3.9136* 10pow-3)/ 18.29329
X4 = 2.22336
