12 points Six samples of each of four types of cereal grain

(12 points) Six samples of each of four types of cereal grain grown in a certain region were analyzed to determine thiamine content (g/g). Use the graindata.csv data set and R code from Data Sets and Code to analyze whether there is evidence that the mean thiamine content differs among the grain types.

a. (3 points) Plot and paste a side-by-side box plot that compares the thiamine content among the grain types. From the side-by-side box plot does there look to be a difference in the average thiamine content among grains? Explain which grains look to be different/same.

b. Perform a Single Factor ANOVA to test whether there is evidence that the mean thiamine content differs among the grain types.

a. (2 points) State the null and alternative hypotheses.

b. (4 points) Paste ANOVA test output from R. Use the F statistic and p-value from the output to make a conclusion about the test. Use a significance level of 0.05. Include context from the problem.

c. (3 points) Perform a Tukey’s Multiple Comparison procedure. Paste the R output. Are there any individual comparisons that are significant at the 0.05 significance level? If so, state which ones and give the estimated difference.

data of ST314 Student Information Survey(2).

Data of graindata:

GIVEN CODE:

# Download the ST314 Student Survey Data.

# Save it where you will remember.

# Upload Data Set into R.

# Highlight and Run the line below. Select the data file from browse window.

# The data has now been named \"st314data\"

st314data = read.csv(file.choose(), header = TRUE)

# Take a look at st314data. By running the name.

st314data

# Part 1 OPTIONAL.

# This code will recreate the information provided in the Data Analysis Part 1

# Creates a side by side boxplot

boxplot(st314data$CloseFriends~st314data$Profile, horizontal = TRUE,

main = \"Number of Reported Close Friends

among ST314 Summer Students w/

or w/out a Social Networking Profile\", col = \"aquamarine\" ,

xlab = \"Number of Close Friends\",

axes = FALSE)

axis(1, at = seq(0,50,5))

axis(2, at = c(1,2), labels = c(\"No Profile\", \"Profile\"))

# Performs a Pooled Two Sample T Test assumes population variances are the same.

t.test(st314data$CloseFriends~st314data$Profile, var.equal = TRUE)

# Get Summary Statistics for each group

Profile.Average = mean(st314data$CloseFriends[st314data$Profile==\"TRUE\"])

Profile.Average

Profile.sd = sd(st314data$CloseFriends[st314data$Profile==\"TRUE\"])

Profile.sd

Profile.n = length(st314data$CloseFriends[st314data$Profile==\"TRUE\"])

Profile.n

NOProfile.Average = mean(st314data$CloseFriends[st314data$Profile==\"FALSE\"])

NOProfile.Average

NOProfile.sd = sd(st314data$CloseFriends[st314data$Profile==\"FALSE\"])

NOProfile.sd

NOProfile.n = length(st314data$CloseFriends[st314data$Profile==\"FALSE\"])

NOProfile.n

# Part 2g

# Perform a Welch\'s Two Sample T Test

t.test(st314data$CloseFriends~st314data$Profile)

# Part 3

# Download and Save the grain data set.

# Upload Data Set into R.

# Highlight and Run the line below. Select the data file from browse window.

# The data has now been named \"gdata\"

gdata = read.csv(file.choose(), header = TRUE)

# Take a look at gdata. By running the name.

gdata

# Create a boxplot of thiamin content vs grain type.

boxplot(gdata$thiamine~gdata$grain, col = \"yellow\", main = \"Thiamine Content among Four Types of Cereal Grain\")

# Perform a Single-Factor ANOVA to compare mean thiamine of the four grain types.

mod = aov(gdata$thiamine~gdata$grain)

summary(mod)

# If the test is significant from the Single Factor ANOVA, perform a multiple comparisons procedure.

TukeyHSD(mod)

SchoolWorkHours CreditHours SchoolMaterialsDollars TermstoGrad Height Job Salary CloseFriends Activity TextMessages Profile SocialTime WeightDesire DayBorn Gender FemalePresident GradSchool SubjectPreferred
14 6 100 9 62 2 57000 3 60 60 TRUE 10 Maintain Wednesday Female FALSE FALSE Math
12 3 75 6 64 4 70000 3 60 100 TRUE 30 Maintain Sunday Female TRUE TRUE Math
8 3 900 2 66 8 85000 3 120 30 TRUE 30 Maintain Friday Female TRUE TRUE Math
24 7 100 8 63 1 50000 3 30 28 FALSE 0 Increase Thursday Female TRUE FALSE Math
10 3 85 2 62 8 60000 11 300 26 TRUE 20 Maintain Saturday Female TRUE TRUE Math
10 12 100 8 60 2 20000 5 60 60 TRUE 100 Decrease Tuesday Female TRUE TRUE Math
20 10 200 2 49 3 80000 5 75 60 TRUE 15 Maintain Monday Female TRUE TRUE Math
14 6 130 9 68.5 4 55000 15 30 34 TRUE 60 Decrease Wednesday Female TRUE FALSE Writing
9 3 80 10 69 1 55000 10 30 55 TRUE 60 Decrease Friday Female TRUE TRUE Math
10 6 100 8 72 6 70000 4 45 75 TRUE 45 Maintain Tuesday Female TRUE FALSE Math
8 6 150 12 62 3 60000 4 60 20 TRUE 60 Maintain Monday Female TRUE FALSE Math
10 6 0 3 78 1 50000 2 100 100 TRUE 120 Decrease Friday Female TRUE TRUE Math
4 6 200 7 63 1 50000 5 60 500 TRUE 300 Decrease Sunday Female TRUE TRUE Math
12 15 400 3 62 7 70000 3 90 100 TRUE 45 Decrease Tuesday Female TRUE TRUE Math
3 3 80 2 64 3 55000 4 60 30 TRUE 30 Decrease Friday Female TRUE TRUE Math
3 3 75 8 65 0 40000 15 30 10 TRUE 30 Decrease Friday Male TRUE TRUE Math
2 7 200 8 76 3 60000 5 60 30 TRUE 120 Decrease Thursday Male TRUE FALSE Math
18 8 0 4 72 2 50000 6 30 10 TRUE 5 Increase Wednesday Male TRUE FALSE Math
6.5 3 1000 5 70 5 50000 8 60 5 FALSE 0 Increase Wednesday Male TRUE TRUE Math
3 12 100 1 69 1 50000 2 120 100 TRUE 4 Maintain Sunday Male TRUE FALSE Math
24 12 200 8 180 1 58000 6 120 60 TRUE 60 Decrease Wednesday Male TRUE TRUE Math
20 6 75 1 73 4 65000 4 45 100 TRUE 60 Decrease Monday Male FALSE FALSE Math
4 3 0 8 74 3 60000 8 30 100 TRUE 20 Decrease Monday Male TRUE FALSE Math
7 8 200 14 71 1 80000 2 100 10 TRUE 360 Maintain Monday Male TRUE TRUE Writing
15 3 30 4 74 8 70000 8 30 62 TRUE 5 Decrease Thursday Male TRUE FALSE Math
21 9 3000 8 67 2 70000 17 60 12 TRUE 30 Decrease Wednesday Male TRUE TRUE Math
25 13 400 8 71 1 65000 5 190 15 TRUE 45 Increase Thursday Male TRUE FALSE Math
50 16 300 2 75 5 95000 15 30 400 TRUE 180 Decrease Tuesday Male TRUE FALSE Math
8 3 200 4 70 6 70000 6 60 500 TRUE 300 Increase Sunday Male TRUE TRUE Math
22 8 2000 8 69 2 40000 12 60 20 TRUE 2 Maintain Thursday Male FALSE TRUE Math
6 10 150 8 69 1 60000 3 60 10 TRUE 60 Maintain Saturday Male TRUE FALSE Math
24 11 130 7 72 18 55000 5 30 10 TRUE 60 Maintain Saturday Male TRUE FALSE Math
20 3 1000 1 69 4 40000 1 65 4 TRUE 80 Decrease Tuesday Male FALSE FALSE Math
5 7 150 2 72 8 110000 9 60 200 TRUE 15 Maintain Wednesday Male TRUE FALSE Writing
3 3 0 8 73 2 70000 5 30 30 TRUE 60 Decrease Tuesday Male TRUE TRUE Math
25 10 300 1 72 3 70000 4 30 10 TRUE 60 Maintain Thursday Male TRUE TRUE Math
2 3 70 3 70 1 30000 4 0 8 TRUE 0 Increase Wednesday Male TRUE FALSE Math
3.5 8 200 4 72 2 45000 3 45 3 TRUE 0 Increase Saturday Male TRUE FALSE Writing
6 6 200 7 72 0 30000 3 15 3 TRUE 300 Increase Tuesday Male FALSE TRUE Math
10 13 250 10 70 2 50000 3 70 20 TRUE 30 Maintain Thursday Male TRUE FALSE Math
5 4 150 8 75 2 70000 10 40 20 TRUE 45 Decrease Monday Male TRUE TRUE Math
20 7 160 7 71 4 70000 10 0 20 TRUE 20 Maintain Tuesday Male TRUE TRUE Writing
45 19 175 4 75 7 60000 9 45 50 TRUE 30 Increase Thursday Male TRUE TRUE Math
8 10 250 6 72 5 60000 10 120 50 TRUE 75 Increase Wednesday Male FALSE FALSE Math
20 3 100 6 71.5 0 77720 5 60 15 TRUE 90 Increase Tuesday Male FALSE TRUE Math
30 14 600 13 73 2 79000 12 30 500 TRUE 60 Decrease Tuesday Male TRUE FALSE Math
30 12 600 4 69 10 70000 4 30 20 TRUE 30 Maintain Tuesday Male TRUE FALSE Math
4 6 100 8 73 13 50000 1 20 0 TRUE 30 Decrease Sunday Male TRUE TRUE Math
10 4 0 2 76 3 35000 2 60 5 TRUE 60 Decrease Wednesday Male TRUE FALSE Writing
9 3 80 4 66 6 50000 5 90 12 FALSE 0 Decrease Thursday Male TRUE FALSE Math
10 3 0 7 72 1 35000 5 60 10 TRUE 40 Maintain Sunday Male TRUE FALSE Math
10 6 75 8 65 0 20000 50 180 100 FALSE 0 Decrease Wednesday Male TRUE TRUE Writing
6 3 200 6 68 3 63000 1 120 10 TRUE 10 Decrease Tuesday Male TRUE FALSE Math
4 3 200 8 69 4 75000 4 300 250 TRUE 60 Decrease Wednesday Male TRUE TRUE Math
6 9 300 8 5.6 0 58000 1 50 23 TRUE 300 Decrease Sunday Male TRUE TRUE Math
16 12 100 8 72 4 40000 3 20 18 TRUE 120 Decrease Thursday Male TRUE TRUE Writing
10 3 75 10 67 3 80000 4 120 2 TRUE 120 Increase Tuesday Male TRUE TRUE Math
5 3 1350 9 70 12 75000 2 510 11 FALSE 0 Maintain Saturday Male TRUE FALSE Math
20 10 150 8 71 3 40000 3 60 10 TRUE 30 Increase Tuesday Male FALSE TRUE Math
15 4 133 8 64.5 0 40000 8 15 56 TRUE 30 Increase Wednesday Male TRUE TRUE Math
4 13 300 8 67 3 80000 2 70 150 TRUE 15 Maintain Monday Male TRUE TRUE Math

Solution

Using Minitab the oneway ANOVA code is,

Minitab output is,

(12 points) Six samples of each of four types of cereal grain grown in a certain region were analyzed to determine thiamine content (g/g). Use the graindata.csv
(12 points) Six samples of each of four types of cereal grain grown in a certain region were analyzed to determine thiamine content (g/g). Use the graindata.csv
(12 points) Six samples of each of four types of cereal grain grown in a certain region were analyzed to determine thiamine content (g/g). Use the graindata.csv
(12 points) Six samples of each of four types of cereal grain grown in a certain region were analyzed to determine thiamine content (g/g). Use the graindata.csv

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site