Find the real part the imaginary part and the absolute value
Find the real part, the imaginary part, and the absolute value of sin (x - iy).
Solution
sin(x-iy)=sinx.cosiy-cosx.siniy
Since siniy=i sinhy ,cosiy=coshy
Sin(x-iy)=sinx.coshy- cosx.i sinhy
= sinx.1/2 (e^y +e^-y) -cosx.i.1/2(e^x-e^-x)
Real part=1/2 sinx(e^y+e^-y)
Imaginary part=-1/2 cosx(e^x-e^-x)
Absolute value=1/2{sinx(e^y+e^-y)+cosx(e^x-e^-x)}
