7 Show that if X and Y are uncorrelated then varx y sigma
7. Show that if X and Y are uncorrelated , then var[x + y] = sigmax^2 + sigmaY^2
Solution
Let us first solve Var(X + Y ) = E[(X + Y )(X + Y )] E[X + Y ]2
= E[X2 + 2XY + Y 2] (µx + µy)2
= E[X2 + 2XY + Y 2] µ2x 2µxµy µ2y
= (E[X2] µ2x) + (E[Y 2] µ2y) + 2(E[XY ] µxµy)
= Var(X) + Var(Y ) + 2Cov(X, Y ).
Now X and Y are uncorrelated if Cor(X, Y ) = 0.
Hence putting this condition we get var(X +Y)=var(X)+var(Y)
![7. Show that if X and Y are uncorrelated , then var[x + y] = sigmax^2 + sigmaY^2 SolutionLet us first solve Var(X + Y ) = E[(X + Y )(X + Y )] E[X + Y ]2 = E[X2 7. Show that if X and Y are uncorrelated , then var[x + y] = sigmax^2 + sigmaY^2 SolutionLet us first solve Var(X + Y ) = E[(X + Y )(X + Y )] E[X + Y ]2 = E[X2](/WebImages/15/7-show-that-if-x-and-y-are-uncorrelated-then-varx-y-sigma-1024353-1761530164-0.webp)