3cot2 theta 4 csc theta 1Solution3cot2 theta 4 csc theta 1 c
3cot^2 theta -4 csc theta =1
Solution
3cot^2 theta -4 csc theta =1
[csc^2 theta -cot^2 theta=1 is an identity =>cot^2 theta=csc^2 theta -1]
3(csc^2 theta -1) -4 csc theta =1
3csc^2 theta -3 -4csc theta =1
3csc^2 theta -4csc theta -4=0
3csc^2 theta -6csc theta+2csc theta -4=0
3csctheta(csctheta -2)+2(csctheta -2)=0
(csctheta -2)(3csctheta +2)=0
range of csctheta is (-infinity,-1)U(1,csctheta)
so csctheta-2 =0
csctheta=2
sintheta =1/2
theta =2n+(/6) ,2n+(5/6) where n is an integer
![3cot^2 theta -4 csc theta =1Solution3cot^2 theta -4 csc theta =1 [csc^2 theta -cot^2 theta=1 is an identity =>cot^2 theta=csc^2 theta -1] 3(csc^2 theta -1) - 3cot^2 theta -4 csc theta =1Solution3cot^2 theta -4 csc theta =1 [csc^2 theta -cot^2 theta=1 is an identity =>cot^2 theta=csc^2 theta -1] 3(csc^2 theta -1) -](/WebImages/15/3cot2-theta-4-csc-theta-1solution3cot2-theta-4-csc-theta-1-c-1024399-1761530195-0.webp)