a ft et31 find domain and image of f 1 b gt 2t 1 t 3 fin
a) f(t) = e^t^3+1 find domain and image of f^ -1
b) g(t) = 2t + 1/ (t + 3) find domain and image of g^ -1
Solution
a) f(t) = et^3+1
let f(t)=y =>t =f-1(y)
et^3+1=y
t3+1=ln(y)
t3=(ln(y) -1)
t=(ln(y) -1)1/3
f-1(y)=(ln(y) -1)1/3
f-1(t)=(ln(t) -1)1/3
f-1(t) exists when
ln(t) -1>0
ln(t) >1
t>e
domain =(e,infinity)
image =(0,infinity)
b)g(t) = (2t + 1)/ (t + 3)
let g(t)=y
t =g-1(y)
(2t + 1)/ (t + 3) =y
(2t + 1)=y(t + 3)
2t +1 =yt +3y
2t -yt =3y -1
t (2-y) =(3y -1)
t =(3y -1)/(2-y)
g-1(y) =(3y -1)/(2-y)
g-1(t) =(3t -1)/(2-t)
domain(-infinity,2)U(2,infinity)
range =domain of g(t)=(-infinity,-3)U(-3,infinity)
