Find the inverse Laplace transforms of FS S2 5 S 6S 4 S
Find the inverse Laplace transforms of F_(S) = S^2 + 5 S + 6/(S + 4) (S + 1)^2 F_(S) = 8(S + 1) (S + 3)/S(S + 4) (S + 1) F_(S) = 5 S^2 +7 S + 29/S (S^2 + 4 S + 29) F_(S) = 5/S(S + 1) (S^2 + 6 S + 10)
Solution
1) f(s)=[(s^2+5s+6)/[(s+4)(s+1)^2]]=a/(s+4)+b/(s+1)+c/(s+1)^2
s^2+5s+6=a(s+1^2)+b(s+4)(s+1)+c(s+4)
s^2+5s+6=s^2(a+b)+s(2a+5b+c)+(a+4b+4c)
a+b=0
2a+5b+c=5
a+4b+4c=6
solve above equations
a=-1.5
b=1.5
c=0.33
f(t)=-1.5e^(-4t)+1.5e(-t)+0.33.t.e(-t)
2) f(s)=[8(s+1)(s+3)]/[s(s+1)(s+4)]=a/s+b/(s+1)+c/(s+4)
8(s^2+4s+3)=a(s^2+5s+4)+b(s^2+4s)+c(s^2+s)
a+b+c=8
5a+4b+c=32
4a=24
solve above equations
a=6
b=0
c=2
f(t)=6+2*e^(-4t)
