Solve y y 2y 0 y0 7 y0 2 by converting to a 1st order s
Solve y\" - y\' - 2y = 0, y(0) = 7, y\'(0) = 2 by converting to a 1^st order system and using the elimination method. No credit for using Laplace transforms.
Solution
y\'=w
y\'\'=w\'
So,
w\'-w-2y=0
w\'=w+2y
y\'=w
y(0)=7,w(0)=2
y=(w\'-w)/2
y\'=(w\'\'-w\')/2
Using y\'=w from second equation gives
2w=w\'\'-w\'
w\'\'-w\'-2w=0
Linear homogeneous odes with constant coefficients so, w=exp(kt)
Substituting gives
k^2-k-2=0
k^2-2k+k-2=-
k=2,-1
w=Ae^{2t}+Be^{-t}
w(0)=2=A+B
y=(w\'-w)/2=(2Ae^{2t}-Be^{-t}-Ae^{2t}-Be^{-t})/2=(Ae^{2t}-2B e^{-t})/2
y=(Ae^{2t}-2B e^{-t})/2
y(0)=7=(A-2B)/2
A-2B=14
A+B=2
B=-4
A=6
y=(6e^{2t}+8 e^{-t})/2=4e^{-t}+3e^{2t}
