Use Eulers method to approximate the solution to the followi
Use Euler\'s method to approximate the solution to the following intial value problem at the points x = 1.1, 1.2, and 1.3 using steps of size 0.1. Use 3 decimal places.
y\'= x + y2 , y(0) = 1
Solution
f(x,y)=x+y^2
h=0.1
y0=1,x0=0
y_{n+1}=y_n+hf(x_n,y_n)=y_n+0.1*(x_n+y_n^2)
We solve this in excel sheet
We get the following table
Hence,
| x | y |
| 0 | 1 |
| 0.1 | 1.1 |
| 0.2 | 1.231 |
| 0.3 | 1.4025361 |
| 0.4 | 1.6292468512 |
| 0.5 | 1.9346913814 |
| 0.6 | 2.3589944555 |
| 0.7 | 2.9754799396 |
| 0.8 | 3.9308280267 |
| 0.9 | 5.5559689243 |
| 1 | 8.7328479931 |
| 1.1 | 16.4591114001 |
| 1.2 | 43.6593462084 |
| 1.3 | 234.3931973428 |
