1Consider two random variables X1 and X2 with mean values mu
1.Consider two random variables X1 and X2 with mean values mu1 = 10 and mu2 = 2, respectively.
What is the numerical value of E(2X1 - 3X2)?
26
20
14
8
5
3.33
2.Consider two independent random variables X1 and X2 with standard deviation values sigma1 = 6 and sigma2 = 4, respectively.
What is the numerical value of V(2X1 - 3X2)?
0
2
10
20
52
288
3.Let X1, X2,
Solution
1. E(2X1 - 3X2) = 2E(X1) - 3E(X2) = 2*10 - 3*2 = 14
2. V(2X1-3X2) = 4V(X1) + 9V(X2) = 4*62 + 9*42 = 288
3. E(Xbar) = mu = 75
4. SD(Xbar) = SD / root(n) = 16 / root(64) = 16/8 = 2
5. All are true
E(Xbar) = mu
V(Xbar) = sigma^2 / n
E(T) = n(mu)
V(T) = n(sigma^2)
6. Var(Xbar) = Var(X)/n = (1/12)*1/100 = 1/1200
7. Expected value of Phat = 0.5
