1Consider two random variables X1 and X2 with mean values mu

1.Consider two random variables X1 and X2 with mean values mu1 = 10 and mu2 = 2, respectively.

What is the numerical value of E(2X1 - 3X2)?

26

20

14

8

5

3.33

2.Consider two independent random variables X1 and X2 with standard deviation values sigma1 = 6 and sigma2 = 4, respectively.

What is the numerical value of V(2X1 - 3X2)?

0

2

10

20

52

288

3.Let X1, X2,

Solution

1. E(2X1 - 3X2) = 2E(X1) - 3E(X2) = 2*10 - 3*2 = 14

2. V(2X1-3X2) = 4V(X1) + 9V(X2) = 4*62 + 9*42 = 288

3. E(Xbar) = mu = 75

4. SD(Xbar) = SD / root(n) = 16 / root(64) = 16/8 = 2

5. All are true

E(Xbar) = mu

V(Xbar) = sigma^2 / n

E(T) = n(mu)

V(T) = n(sigma^2)

6. Var(Xbar) = Var(X)/n = (1/12)*1/100 = 1/1200

7. Expected value of Phat = 0.5

1.Consider two random variables X1 and X2 with mean values mu1 = 10 and mu2 = 2, respectively. What is the numerical value of E(2X1 - 3X2)? 26 20 14 8 5 3.33 2.

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site