1 Find the exact value of each expression sin 7pi6 13pi3 2
1. Find the exact value of each expression. sin (7pi/6 - 13pi/3)
2. Find the exact values of the sine, cosine, and tangent of the angle. 7/12 = /3 + /4
Sin(7/12)=
Cos(7/12)=
Tan(7/12)=
3. Write the expression as the sine, cosine, or tangent of an angle. cos (/7) cos (2 /5) sin( /7) sin (2/5)
Solution
sin (7pi/6 - 13pi/3)
= sin(pi +pi/6 - ( 4pi +p/3))
Use sin(A -B) = sinAcosB - cosAsinB
So, sin (7pi/6 - 13pi/3) = sin7pi/6cos13pi/3 - sin13pi/3cos7pi/6
= sin(pi +pi/6)cos(4pi +pi/3) - sin(4pi +pi/3)cos(pi +pi/6)
= -sinpi/6cospi/3 + sinpi/3cospi/6
= -(1/2)(1/2) + (sqrt3/2)(sqrt3/2)
= -1/4 + 3/4
= 2/4
= 1/2
