Compute the solution to the following initial value problem
Compute the solution to the following initial value problem.
y\'\'+9y=cos(t)
y(0)=y\'(0)=0
y\'\'+9y=cos(t)
y(0)=y\'(0)=0
Solution
y \' \' +9y=cos(t)
for particular integral:
let y=Acos(t)+Bsin(t)
- Acost - Bsint +9Acost+9Bsint= cost
comparing the values we get
A=1/8 ,B=0
yp =(1/8)cos(t)
for complementary function
(D^2 +9)y=0
since roots of characteristic equation are imagenary i.e +3i,-3i
ycomp =Ccos(3t)+Dsin(3t)
from initial conditions : y(0)=0=y \' (0) =>y \' \'(0) =1
C= -(1/9) , D=0
so, general solution is : y= (-1/9)cos(3t) +(1/8)cos(t) .
