Let angle POQ be designated theta Angles PQR OSU and VRQ are
Let angle POQ be designated theta. Angles PQR, OSU, and VRQ are right angles. If theta = 20 degree, find the length of OU accurate to four decimal places.
Solution
angle POQ = 20 degrees
since angle SOR = 90 degrees
therefore, angle SOU = 90-20 = 70 degrees
length of OS = 1 , since coordinates of S are (0,1)
applying tan rule on triangle OSU ( right angle triangle )
tan 70 = SU / SO
2.7474 = SU / 1
SU = 2.7474
applying pythagorean theorem
OU^2 = SO^2 + SU^2
OU^2 = 1^2 + 2.7474^2 = 8.5482
OU = sqrt 8.5482 = 2.9237
