determine the horizontal asymptote of the graph of the funct

determine the horizontal asymptote of the graph of the function:

a. y=1

b. y=4/3

c. y=0

d. y=7/4

Solution

f(x) = (4x3 - 2x2 + 3x + 7)/(4 - 8x + 3x3 + x2)

==> f(x) = (4x3 - 2x2 + 3x + 7)/(3x3 + x2 - 8x -4)

leading coefficient in the numerator = 4 , leading coefficiet in the denominator = 3

Equation of harizontal asymptote y = (leading coefficient in the numerator)/( leading coefficiet in the denominator)

==> y = 4/3

Hence y = 4/3 is the equation of horizontal asymptote. (option b)

Method 2:

Equation of horizontal asymptote y = lim[x -> ] f(x)

==> y = lim[x -> ] (4x3 - 2x2 + 3x + 7)/(4 - 8x + 3x3 + x2)

==> y = lim[x -> ] (x3(4 - 2/x + 3/x2 + 7/x3))/(x3( 4/x3 - 8/x2 + 3 + 1/x)

==> y = lim[x -> ] (4 - 2/x + 3/x2 + 7/x3)/( 4/x3 - 8/x2 + 3 + 1/x)

==> y = (4 - 0 + 0 + 0)/(0 - 0 + 3 + 0)

==> y = 4/3 is equation of horizontal asymptote (Option B)

determine the horizontal asymptote of the graph of the function: a. y=1 b. y=4/3 c. y=0 d. y=7/4Solutionf(x) = (4x3 - 2x2 + 3x + 7)/(4 - 8x + 3x3 + x2) ==> f

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site