determine the horizontal asymptote of the graph of the funct
determine the horizontal asymptote of the graph of the function:
a. y=1
b. y=4/3
c. y=0
d. y=7/4
Solution
f(x) = (4x3 - 2x2 + 3x + 7)/(4 - 8x + 3x3 + x2)
==> f(x) = (4x3 - 2x2 + 3x + 7)/(3x3 + x2 - 8x -4)
leading coefficient in the numerator = 4 , leading coefficiet in the denominator = 3
Equation of harizontal asymptote y = (leading coefficient in the numerator)/( leading coefficiet in the denominator)
==> y = 4/3
Hence y = 4/3 is the equation of horizontal asymptote. (option b)
Method 2:
Equation of horizontal asymptote y = lim[x -> ] f(x)
==> y = lim[x -> ] (4x3 - 2x2 + 3x + 7)/(4 - 8x + 3x3 + x2)
==> y = lim[x -> ] (x3(4 - 2/x + 3/x2 + 7/x3))/(x3( 4/x3 - 8/x2 + 3 + 1/x)
==> y = lim[x -> ] (4 - 2/x + 3/x2 + 7/x3)/( 4/x3 - 8/x2 + 3 + 1/x)
==> y = (4 - 0 + 0 + 0)/(0 - 0 + 3 + 0)
==> y = 4/3 is equation of horizontal asymptote (Option B)
